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Experiments with MINLP Branching Techniques

SVEN LEYFFER

ABSTRACT. Mixed-integer nonlinear optimization problems arise in scientific and operational
applications ranging from the reordering of nuclear fuel rods to the design of wireless networks.
‘We present some novel mixed-integer nonlinear optimization applications and review existing so-
lution techniques. We also describe some experiments with nonlinear branch-and-bound branch-
ing techniques that lead us to promote a tighter integration of nonlinear solvers into a general
branch-and-cut framework.

1. Introduction and Background

Many scientific, engineering, and public sector applications involve both discrete decisions and
nonlinear system dynamics that affect the optimality of the final design. Mixed-integer nonlinear
programming (MINLP) optimization problems combine the difficulty of optimizing over discrete
variable sets with the challenges of handling nonlinear functions. MINLP is one of the most flexible
modeling paradigms available; and an expanding body of researchers and practitioners, including
computer scientists, engineers, economists, statisticians, and operations managers, are interested
in solving large-scale MINLPs. Such problems can be expressed conveniently as

mir;il;lize f(z,y) subject toc(z,y) <0, z € X, y €Y integer, (1.1)
where x, y are the continuous and integer variables, respectively, and X, Y are polyhedral sets. The
functions f,c are assumed to be twice continuously differentiable and possibly convex. Surveys of
MINLP can be found in [22, 24, 23].

Given the generality and flexibility of the model, MINLPs have been proposed for many diverse
and important applications. A small subset of these applications includes portfolio optimization
[5, 29], design of water distribution networks [10, 30], block layout design in the manufacturing
and service sectors [11], network design with queuing delay constraints [9], operational reloading of
nuclear reactors [35], integrated design and control of chemical processes [21], blackout prevention
for electrical power systems [6, 15], and minimizing of the environmental impact of utility plants
[16].

New MINLP Applications in Computer Science. Mixed integer nonlinear programs are
fast becoming prevalent on the research frontiers of computer science. For example, there are many
emerging applications of MINLP in communications research. Problems in wireless bandwidth
allocation [4, 36, 13], selective filtering [37, 38], network design topology [3, 12], and optical network
performance optimization [17] can all be cast as MINLPs.

We have begun building a library, called DIWAL, of MINLP test problems from computer
science applications; see http://wiki.mcs.anl.gov/NEOS/index.php/DIWAL. Current applications
include the following;:

e Nonlinear optimization of IEEE 802.11 mesh networks [13]: model formulated to plan and
optimize IEEE 802.11 broadband access networks.

e Distributed optimization for data-optical networking [17]: model to jointly optimize optical
networking provisioning and Internet protocol traffic engineering.
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e Energy provisioning and relay node placement for wireless sensor networks [28]: model
formulated to determine the optimal placement of provisioned energy among local aggre-
gation and forwarding nodes and relay nodes such that the two-tiered network lifetime is
maximized.

e Capacity fairness for wireless mesh networks [25]: model to assign channels to user nodes
and determine power of transmission for mesh routers in a wireless network.

In some cases, these applications require detailed reformulations to avoid or mitigate nonconvex-
ities. Next, we review a particular solution method for MINLP, namely, branch-and-bound, and
then present ideas on how to improve this approach through a tighter integration of the MIP and
NLP solves.

2. Nonlinear Branch-and-Bound

Nonlinear branch-and-bound dates back to the 1960s [31, 14]. It is best explained as a tree search.
Initially, all integer restrictions are relaxed and the resulting nonlinear programming (NLP) relax-
ation is solved. Let the solution be (&, §). If all integer variables, ¢, are integral, then we have solved
the MINLP. Otherwise, we can choose some nonintegral integer to branch on. Branching on, say
i, is achieved by creating two new NLP problems with added bounds y; < [§;] and y; > [3:] + 1,
respectively (where [a] is the largest integer not greater than a). Next, one of these two NLPs is
selected and solved, and the process is repeated. We can declare that a node has been fathomed if

one of the following conditions is satisfied:

(1) An infeasible NLP is detected, implying that the whole subtree is infeasible.

(2) An integer feasible node is detected, which provides an upper bound on the optimum of
the MINLP.

(3) A lower bound on the NLP solution is greater than or equal to the current upper bound,
which implies that we cannot find a better solution in this subtree.

After a node has been fathomed, the algorithm backtracks to another open node until all nodes
are fathomed. Heuristics for selecting a branching variable and nodes are discussed in [26, 39].

Typically, every NLP is solved from a previously saved primal-dual solution. In mixed-integer
linear programming (MILP) it is sufficient to save a basis because a basis uniquely determines
a primal-dual iterate for a linear program (LP). This situation does not generalize to MINLPs,
however. Given a basis (or active set) is not sufficient to determine a starting point because the
Jacobian also depends on the value of the variables, (z,y). In this paper we focus on a closer
integration of the NLP solver and branch-and-bound, concentrating on one particular branching
rule that has proved to be successful in MILP, namely, strong branching [2].

2.1. Preliminary Experience with Nonlinear Branch-and-Bound

We present some preliminary numerical results that motivate our interest in nonlinear branch-
and-bound. We start by noting that MINLPBB [18] is typically outperformed by more modern
approaches such as LP/NLP-based branch-and-bound [34, 8, 32, 1]. Figure 1 shows a performance
profile of several MINLP solvers on a set of medium-sized problems. A performance profile can be
interpreted as the probability distribution that a solver is at worse 2” times worst than the best
solver. Solvers whose lines are toward the left top are best.

We note that MINLPBB is a fairly simplistic nonlinear branch-and-bound solver. It implements
a depth-first tree search with maximum fractional branching, which has been shown to be noto-
riously poor. Strong branching is usually superior to maximum fractional branching for solving
MILPs [2]. We can readily generalize strong branching to MINLP. Given a solution of parent node
NLP, P, with optimum value fP, we perform the following steps:

(1) Find all nonintegral integer variables y;,i € C.
(2) For every candidate y; € C solve two child NLPs:
e A down NLP: PU{y; = |y;]} with optimal value f; .
e Anup NLP: PU {y; = |y;| + 1} with optimal value f;".
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FIGURE 1. Performance profile of CPU time of several MINLP solvers on a set of
medium-sized problems.

(3) For every candidate y; € C' compute its score:
score; := (1 — p)min(f;” — f2, f; = f?) + pmax(f; — f7, " = f7),

where = 1/6.
(4) Branch on the variable y; that maximizes score;.

The goal of this procedure is to maximize the change in the objective and select branching variables
that change the problem the most [2].

Figure 2 shows the effect of strong branching for nonlinear branch-and-bound. The number of
nodes in the tree is reduced significantly compared to maximum-fractional branching. However, the
additional CPU time needed to solve these NLPs, even using SQP warm-starts, is still prohibitive,
and strong branching is outperformed even by maximum fractional branching. The plots also show
pseudo-cost branching, which outperforms both other options.
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FIGURE 2. Performance profile comparing strong branching and maximum-
fractional branching. The left plot shows the number of nodes; the right shows the
CPU time.

Motivated by these observations, we next consider a closer integration of the NLP solver with
nonlinear branch-and-bound to reduce the CPU time required for strong branching.



2.2. Challenges in Integrating NLP and MIP

In NLP, we cannot generate a vertex or primal-dual solution simply from a knowledge of the basis,
or active set. The reason is that even given an optimal active set, we still need to solve a nonlinear
problem (using, e.g., Newton’s method) to obtain its solution, whereas in LP we simply update
basis factors and perform a forward and a backward solve with the basis.

In principle, NLP solvers also compute factors that could be reused. Unfortunately, these factors
are always outdated after a solve. To see why, consider a simple Newton iteration. At iteration k,
we factor the Jacobian matrix, and compute a step, zpy+1 = 2 + d. If zx41 satisfies our stopping
criterion, then we exit the solver without forming new factors. This situation is exacerbated in
NLP, where not only do we have outdated factors, but the convergence test requires us to update
the gradients (i.e Jacobian), so that factors and the stored matrices are out of sync after an NLP
solve.

3. Integrating NLP and MIP

Our NLP solver is a sequential quadratic programming (SQP) method; see [27, 33, 7]. SQP methods
successively minimize a quadratic model, myg (), subject to a linearization of the constraints about
2z = (g, yr). We define the displacement d := z — z;, and obtain the QP

1
minidmize my(d) = gt d+ idTde subject to ¢ + ALd <0, (3.1)

where gr, = Vf(zk,yx) is the objective gradient, cx, = c(zk, yx) are the values of the constraints,
Ar = Ve(xy,yr) is the Jacobian matrix, Hy ~ V2L(zx,\r) approximates the Hessian of the
Lagrangian, and Ay is the multiplier estimate at iteration k. The new iterate is 211 = zx + d,
together with the multipliers Ag41 of the linearized constraints of (3.1).

We use the SQP solver FilterSQP [19] which implements a trust-region SQP method. Conver-
gence is enforced with a filter [20], whose components are the ¢1-norm of the constraint violation,
and the objective function.

We can improve strong branching in two ways. The first is to replace the costly NLP solve for
every problem on the list of candidates branching variables, C, by a single QP solve. The second
approach is to reuse as much of the final QP as possible solve from the previous iteration.

3.1. Approximate Strong Branching

The simplest way to improve strong branching is by replacing a complete NLP solve by a single
iteration of SQP. Recall that we have already solved the parent problem, so we have a reasonable
approximation of the solution that we obtained if we branched on one variable. This approach is
readily implemented. Because the Hessian, Hy, and the Jacobian, Ay are outdated, however, we
cannot readily reuse their factors (which are available after a solve with FilterSQP) and, instead,
can only perform a warm-start in which we send the final optimal active set to the QP solver.
We refer to this kind of branching as approximate strong branching. Special care has to be taken
because every solve is only an approximate NLP, so the usual fathoming rules during strong
branching have to be adapted.

Our preliminary numerical results in Figure 3 show that approximate strong branching (black
line) improves on strong branching and is almost competitive with the simpler pseudo-cost branch-
ing, in terms of both number of nodes and CPU time.

We can improve our branching decisions further by adapting reliability branching to NLP. Reli-
ability branching computes pseudo-cost estimates by strong branching until the resulting pseudo-
cost estimate is deemed sufficiently reliable (measured by the number of times pseudo-costs have
been updated for each integer variable). We use a threshold of 2 in our experiments, and we apply
only approximate strong branching, rather than complete NLP solves. The results are displayed
in Figure 4.

From Figure 4 we see that reliability branching is the method of choice for MINLP. Most
important, reliability branching also outperforms BONMIN-Hybrid [8] in terms of CPU time. The
comparison in terms of problems is less relevant because BONMIN-Hybrid counts only NLP solves
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FIGURE 3. Performance profile comparing approximate strong branching with
strong branching, maximum-fractional branching, and pseudo-cost branching. The
left plot shows the number of nodes; the right shows the CPU time.
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FIGURE 4. Performance profile comparing approximate strong branching with
strong branching, maximum-fractional branching, pseudo-cost branching, reliabil-
ity branching, and BONMIN-Hybrid. The left plot shows the number of nodes;
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this category, ignoring LP nodes that are solved. We are currently investigating the optimal

choice of the reliability parameters for MINLP.

Next, we present an approach that allows us to reuse the factors of the final QP solve, in an

attempt to gain further performance advances.

3.2. Hot-Starting QP Solves

The reuse of existing factors of the previous QP solves is the most appealing way to obtain pseudo-
cost estimates. In our implementation, after solving the parent NLP, we resolve the final QP to
synchronize the factors with the solution of the NLP, and we then store these factors so that we
can reuse them in every QP during the strong-branching phase. We use a special feature in the
QP solver that allows us to hot-start the QP and is comparable to a dual-active-set method.

Table 1 shows the CPU times for some reasonably sized QP approximations. The first column

gives the problem name; # ints shows the number of integer variables; and the next three columns
give the CPU times for full NLP solve, single QP solve, and a hot-started QP solve, respectively.



These results show that the benefit obtained by solving just a single QP is only a factor of 2 or 3,
whereas hot-started QPs are faster by a factor of up to 40.

TABLE 1. CPU times (s) for full NLP solve, single QP solve, and hot-started QP solve.

Problem # Ints ‘ Full NLP Single QP Hot QP

stockcycle 480 4.08 3.32 0.532
RSyn0805H 296 78.7 69.8 1.94
SLay10H 180 18.0 17.8 1.25
Syn30MO0O3H 180 40.9 14.7 2.12

These preliminary results are encouraging because they hold the promise of a cheaper strong-
branching decision for the whole tree. An alternative use of hot-started QPs that we are exploring
is to replace the NLP-based tree search by a QP-based tree-search with only occasional updates
to compute bounds. We believe that this approach may become competitive with the prevalent
approaches to MINLP that use LP-based tree-search techniques.

4. Conclusions

We have presented new MINLP applications arising in computer science, including the optimization
of IEEE 802.11 mesh networks, design of data-optical networks, optimization of energy provisioning
in relay node placements for wireless sensor networks, and optimal assignment of channels to
users for mesh routers in a wireless network. These models form part of a library, DIWAL; see
http://wiki.mcs.anl.gov/NEOS/index.php/DIWAL.

We have investigated the tighter integration of MIP and NLP solvers for the solution of these
problems. In particular, we have shown that simple heuristics for performing strong branching
based on single QP information are superior to strong branching based on NLP solves.
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